Avanços na Inteligência Artificial para o cuidado de úlceras em pessoas com Diabetes Mellitus
DOI:
https://doi.org/10.31011/reaid-2024-v.98-n.3-art.2326Palavras-chave:
Inteligência Artificial, Pé Diabético, Ferimentos, Saúde DigitalResumo
Neste manuscrito abordamos o uso potencial da Inteligência Artifical (IA) no ensino, na prevenção, na detecção precoce, no diagnóstico e no tratamento das úlceras em pessoas com Diabetes Mellitus por meio de uma discussão estruturada em 4 eixos, sendo eles: Eixo1. Ensino e Informação; Eixo 2.Prevenção; Eixo 3. Detecção Precoce e Diagnóstico; Eixo 4. Tratamento. No qual relatamos as principias e mais atuais pesquisas em cada eixo. Conclui-se que a IA possui um futuro promissor no ensino e informação, na prevenção, na detecção precoce da lesão, no diagnóstico e no tratamento de UPD, com benefícios diretos para os sistemas de saúde, para os pacientes e para os profissionais que prestam assistência às feridas de pessoas com diabetes. Contudo, é ressaltamos que será necessário adaptação e empenho coletivo pelos membros da sociedade para o uso dos potenciais benefícios da IA e deste modo ocorrer uma real melhoria no cuidado de úlceras em pessoas com Diabetes Mellitus favorecida pela IA.
Downloads
Referências
International Diabetes Federation. IDF Diabetes Atlas. 10 edição. Bruxelas, Bélgica; 2021.
Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Demográfico 2022. Rio de Janeiro: IBGE; 2023.
Waibel FWA, Uçkay I, Soldevila-Boixader L, Sydler C, Gariani K. Current knowledge of morbidities and direct costs related to diabetic foot disorders: a literature review. Front Endocrinol (Lausanne). 2024; 17;14:1323315.
Sarp S, Kuzlu M, Wilson E, Cali U, Guler O. The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics (Basel). 2021;10(12):1406.
Barakat‐Johnson M, Jones A, Burger M, Leong T, Frotjold A, Randall S, et al. Reshaping wound care: Evaluation of an artificial intelligence app to improve wound assessment and management amid the COVID-19 pandemic. Int Wound J. 2022;19(6):1561–77.
Tehsin S, Kausar S, Jameel A. Diabetic wounds and artificial intelligence: A mini-review. World J Clin Cases. 2023;11(1):84–91.
Cross K, Harding K. Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence. Int Wound J. 2022;19(6):1283–5.
Bender C, Cichosz SL, Malovini A, Bellazzi R, Pape-Haugaard L, Hejlesen O. Using Case-Based Reasoning in a Learning System: A Prototype of a Pedagogical Nurse Tool for Evidence-Based Diabetic Foot Ulcer Care. J Diabetes Sci Technol. 2022;16(2):454–9.
Mashatian S, Armstrong DG, Ritter A, Robbins J, Aziz S, Alenabi I, et al. Building Trustworthy Generative Artificial Intelligence for Diabetes Care and Limb Preservation: A Medical Knowledge Extraction Case. J Diabetes Sci Technol. 2024; 20:19322968241253568.
Adam M, Ng EYK, Tan JH, Heng ML, Tong JWK, Acharya UR. Computer aided diagnosis of diabetic foot using infrared thermography: A review. Comput Biol Med. 2017;91:326–36.
Liu C, van Netten JJ, van Baal JG, Bus SA, van der Heijden F. Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis. J Biomed Opt. 2015;20(2):026003.
Faus Camarena M, Izquierdo-Renau M, Julian-Rochina I, Arrébola M, Miralles M. Update on the Use of Infrared Thermography in the Early Detection of Diabetic Foot Complications: A Bibliographic Review. Sensors. 2023;24(1):252.
Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K. Association of Toll-Like Receptor 4 Polymorphisms with Diabetic Foot Ulcers and Application of Artificial Neural Network in DFU Risk Assessment in Type 2 Diabetes Patients. Biomed Res Int. 2013;2013:1–9.
Ferreira ACBH, Ferreira DD, Oliveira HC, Resende IC de, Anjos A, Lopes MHB de M. Competitive neural layer-based method to identify people with high risk for diabetic foot. Comput Biol Med. 2020;120:103744.
Yap MH, Chatwin KE, Ng CC, Abbott CA, Bowling FL, Rajbhandari S, et al. A New Mobile Application for Standardizing Diabetic Foot Images. J Diabetes Sci Technol. 2018;12(1):169–73.
Wang L, Pedersen PC, Strong DM, Tulu B, Agu E, Ignotz R. Smartphone-Based Wound Assessment System for Patients With Diabetes. IEEE Trans Biomed Eng. 2015;62(2):477–88.
Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH. DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification. IEEE Trans Emerg Top Comput Intell. 2020;4(5):728–39.
Yap MH, Cassidy B, Pappachan JM, O’Shea C, Gillespie D, Reeves ND. Analysis Towards Classification of Infection and Ischaemia of Diabetic Foot Ulcers. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE; 2021. p. 1–4.
Kaur D, Purwar R. Nanotechnological advancement in artificial intelligence for wound care. In: Nanotechnological Aspects for Next-Generation Wound Management. Elsevier; 2024. p. 281–318.
Zhao Y, Li Z, Song S, Yang K, Liu H, Yang Z, et al. Skin‐Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Adv Funct Mater. 2019;29(31).
Germani M. Shoes Customization Design Tools for the “Diabetic Foot.” Comput Aided Des Appl. 2011;8(5):693–711.
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.